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A THEORY FOR  THE  OPTIMAL  DETERMINISTIC  CHARACTERIZATION 

OF THE TIME-VARYING DYNAMICS OF THE HUMAN OPERATOR 

By  Walter W. Wierwille  and  Gilbert A. Gagne 

Cornel1  Aeronautical  Laboratory,  Inc. 
of Cornel1  University 

SUMMARY 

A deterministic  theory of characterization is presented  which  can  be 
used  to  determine  the  time-varying  dynamics of the  human  operator  engaged 
in a tracking  task. With this  theory  it is possible  to  obtain a time-varying 
impulse  response  and a time-varying  transfer  function  which  represent  the 
action of a human  operator  in  an  open-  or  closed-loop  control  system. NO 
special   form of input is  required. 

The  characterization,  which  may  be  developed  for  either  real-time  or 
non-real-time  computation, is based  upon  an  exact  theory of fixed-form 
optimization.  A'strongly  convergent,  definitely  stable,  iteration  technique 
can  be  used  to  realize  the  optimal  characterization  filter.  The  theory  takes 
the  time-variation of the  impulse  response  or  transfer  function  into  account, 
s o  that  it is unnecessary  to  make  the  assumption of slowly  varying  dynamics. 

An  uncertainty  or  compromise is shown  to  exist  between  the  error  (that 
is,  the  error  between  the  output of the  human  operator  and  that of the  optimal 
characterizing  filter)  and  the  degree of time-variability of the  optimal 
characterizing  filter.  This  uncertainty  appears  to  be  fundamental,  and 
cannot  be  circumvented. 

A number of experiments  which  verify  and  mqke  use of the  theory  are 
presented. Known time-varying  networks  can  be  accurately  characterized, 
and  changes  in  the  tracking  transfer  characteristic of the  human  operator 
can  be  detected. 
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INTRODUCTION 

Two general  approaches  have  been  used  in  the  past  for  the  character- 
ization of  the  time-varying  dynamics of human  operators  engaged  in  tracking 
tasks.  The first approach is statistical  in  nature  and  involves  the  estimation 
of parameters  within  specified  confidence limits by  finite  time  averages of 
data.  From  this  information,  it  is possible  to  obtain a slowly  time-varying 
characterization  model.  The  second  approach  is  deterministic  in  nature 
and  involves  the  convergence of e r r o r  by  varying  model  parameters  according 
to  the  method of steepest  descent. 2# In  this  case  the  parameters  can  be  per- 
mitted  to  vary  rapidly;  but  since  the  dynamics  are  changing,  the  underlying 
theory is only  approximate.  Other  techniques  have  also  been  used  for 
determining  time-varying  human  operator  dynamics,  but  they  require 
restricted  classes of input  signals. 4 

This  report  presents  an  alternative  theory of t ime-varying  character-  
ization,  which is also  deterministic.  It  differs  from  other  deterministic 
approaches by  the  way  in  which  the  time  variation  is  taken  into  account.  In 
the  sense of the  chosen  performance  measure,  this  time-varying  character- 
ization  scheme  is  optimum, and  no approximations  are  required  in  theory. 

This new approach  incorporates a performance  measure which permits 
minimization of error  between  the  human  operator's  output  signal and that 
of a mathematical  model.  However,  the  minimization  is  subjected  to a 
constraint on  the  change  allowed  in  each  time-varying  parameter  in  the 
model.  The  constraint  itself  contains  an  arbitrary  constant  which  determines 
the  relative  emphasis  to  be  placed  on  parameter  variation  as  compared  with 
tolerated  error.  This  compromise  (or  trade-off)  between  parameter 
variation and  modeling error  is   fundamental  to  the  deterministic  time-varying 
characterization  problem. 

The  approach  which i s  to  be  presented  makes  use of a model  filter of 
fixed  form.  This  filter  is  composed of a group of fixed  component  filters 
whose  inputs  are  connected  to  the  display  input  signal, + and  whose  output 
gains  are  to  be  varied  as  functions of time and  then  summed.  The  character- 
ization  procedure  to  be  described  is  not  limited  to  the  use of l inear  f i l ters,  
since  the  component  filters  may  be  nonlinear i f  desired.  

+If  a compensatory  display  is   used,  the  single  input  (or  error)  signal to  the 
display is also  impressed upon  the  inputs  to  the  model  component  filters. 
If a pursuit  display is used,  the  input  to  the  model  filters  should  be  obtained 
by  subtracting  the  system  output  signal  from  the  system  input  signal,  thereby 
artificially  obtaining  an  error  signal. 
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The  problem  with  which  this  report  deals  and  which  this new charac te r -  
ization  approach is capable of solving is the  following: 

Given: The  input  signal  (an  analog  form of which is displayed 
to  the  operator)  and  corresponding  output  signal 
(proportional  to  control  stick  deflection) of a human 
operator  for a specified  time  interval. 

Determine:  The  time-varying  transfer  characteristic'#  from a 
specified  class  which  most  accurately  characterizes 
(subject  to a required  constraint)  the  human  operator 
during  the  given  time  interval. 

It is important  to  realize  that  the  solution of this  problem  for a particular 
case  is not  generally  amenable  to  extrapolation  or  generalization. If the 
input  signal is changed, i f  the  control  system  configuration is changed,  or 
even if the  problem  is   rerun  in  real   t ime  with  the  same  human  operator,  
one  cannot  expect  to  obtain  exactly  the  same  results. On the  other  hand, 
this  approach  does  answer  the  question, "What was  the  human  operator's 
t ime-varying  transfer  characterist ic  for a par t icular   t racking  task?" A s  
such,  the  approach is meaningful,  for  it  allows  quantitative  evaluations of 
specific  control  situations.  It is particularly  well  suited  for  detecting 
changes  in  the  human  operator 's   transfer  characterist ic.  

If it is assumed  for  the  moment  that  deterministic  time-varying  transfer 
characterist ics  are  obtainable,   there  remains  the  question of  how to  use  these 
character is t ics  so  as  to  yield  valid  extrapolative  results.  The  answer 
involves a straightforward  application of mathematical  statistics.  Exper- 
imental  situations  often  arise  in  which  deterministic  data  have  been  collected 
for a number of subjects  under  controlled  experimental  conditions.  The 
objective  is  to  draw  valid  generalizations by performing  statist ical   tests 
which  make  use of the  data  from all the  subjects. An example is that of 
gathering  tracking  error  data  for a number of subjects  to  compare two 
different  tracking  displays. If a sufficient  number of subjects   are   tes ted,  
and if  the  experiment is properly  controlled,  it  is possible  to  determine 
which  display  is  better,  using  some  measure of e r r o r   a s  a criterion.  In a 
similar  manner,   the  deterministic  t ime-varying  transfer  characterist ics of 
a number of sllbjects  can be obtained  under  controlled  experimental  conditions. 
These  data  can  then  be  statistically  analyzed so  that  valid  extrapolative  results 
a r e  obtained.  Those  factors  which  may  cause  changes  in  the  human  operator's 
response  over  time  can  be  carefully  and  accurately  studied  using  this  method. 
The  effects of fatigue,  learning,  changes  in  input  signal,  changes  in  controlled 
dynamics,  and  changes  in  environment  on  the  human  operator's  transfer 
characteristic  can  be  studied  and  generalized.  This  approach  to  time- 
varying  characterization wi l l  permit  valid  extrapolative  results. 

:: A t ransfer   character is t ic  is any  mathematical  function  which is used to 
describe  the  relationship  between  the  input  and  output  signals of the  human 
operator.  It  may  be  an  impulse  response  function,  or a transfer  function, 
or  another  type of mathematical  description. 
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BA CKGROU ND 

The  deterministic  characterization  theory  affords a method  whereby 
the  time-varying  dynamics of the  human  operator  may  be  characterized. 

If this  theory is to  be  described  in a logical  manner,  it  is necessary 
that a certain  amount of background  information  be  given  beforehand. 

This  information  hopefully  makes  it  possible  to  avoid  the  misunder- 
standing of t e r m s  which  have  been  defined  in  differing  ways  in  the  technical 
l i terature  and  provides  an  appropriate  setting  for  the  time-varying 
characterization  problem. 

Network  Theory  For  Characterization 

A very  important  aspect of t ime-varying  characterization of the  human 
operator is the  development of a suitable  time-variable  network  theory. 
It  would  be desirable  for  such a theory  to  possess  the  following  properties: 

(1)  It  must  be  capable of mathematically  specifying  the 
relationship  between  the  input  signal  and  the  output 
signal of any  linear,  time-varying  network. 

( 2 )  It should  allow  the  development of concepts  such  as  time- 
varying  impulse  response  and  time-varying  transfer  function, 
both of which  degenerate  to  the  usual  definitions  for  the 
fixed  (non-time-varying)  case. 

(3 )  It  should  allow as an  extension  the  capability  for  describing 
special   c lasses  of nonlinear  time-varying  networks. 
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(4) It  must  mathematically  describe a broad  c lass  of linear  time- 
varying  characterization  network  models  which  are known to 
represent  the  human  operator,  and 

(5) The  network  theory  and  chosen  class of models  must  allow  the 
development of a deterministic  theory of characterization. 

It is possible  to  develop a network  theory  which  possesses  all of the  above 
properties . * 

Let  the  impulse  response, &(< r), of a time-varying  linear  network  be 
defined a s  the  response  at   t ime t to  a  unit  impulse  applied r seconds  earlier 
than t . w If %(t.Z) is realizable,  then h / , t ' )  = 0 for 0. Then,  since 
any  realizable  input  signal, x&) , can  be  considered  to  be  composed of 
a group of weighted  impulses, 5 the  output a(t )  is given  by  an  extended  form 
of the  convolution  integral: 

This  form of the  convolution  integral  is  an  exact  description of 
the  relation  between  the  input  and  output of a time-variable  network. It 
reduces  to  the  usual  (constant-coefficient)  case  for h(t, r) = h(O,Z") ; that 
i s ,  if the  impulse  response  is  non-time  varying. 

The transfer  function  (or  frequency  response) of a time-varying  linear 
network  is  defined  as  the  Fourier  transform of the  impulse  response  with t 
t reated  as  a constant  under  the  integral.  Thus, 

The  inverse  theorem  relating  the  time-varying  transfer  function  to  the  time- 
varying  impulse  response  can  be  derived  without  difficulty,  yielding 

These  definitions  for  the  impulse  response  and  frequency  response  are 
similar  to  those of Zadeh. 6 They  have  been  chosen  because  they  allow  the 

I Most of the  theory  has  been  previously  presented  in  the  literature.  However, 
the  method of presentation  is  original. 

:%+ Mathematical   symbols  are  defined  as  they  are  introduced  in  the  text.  
Appendix A also  lists  and  defines  each  symbol. 
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development of a theory  possessing  the  f ive  properties  discussed 
ear l ie r .  

A number of important  theorems  for  t ime-variable  networks  can  be 
proved  by  the  use of the  above  definitions.  Among  them  are  the  following: 

and 

where X ( j w )  is the  Fourier  transform of X( t )  
E(jw)  is the  Fourier  transform of $(if) , 

and 

The  theorem  given  by  equation (4) states  that   the  t ime  response of a t ime-  
variable  network is obtained  by  taking  the  inverse  Fourier  transform of the 
product of the  time-varying  transfer  function  and  the  Fourier  transform of 
the  input  signal.  The  theorem of equation (5) is the  frequency  domain  dual 
of equation ( 1). 7 

The  previously  described  set of definitions  and  theorems  constitutes  an 
elementary,  but  very  general,  approach  to  time-variable  network  theory 
which  can  be  used  for  the  characterization  problem. With this  theory,  it  is 
possible to describe  the  relationship  between  the  input  and  output of any  linear 
time-varying  network.  Because of this  generality,  the  mathematical  deriva- 
tions  for  an  optimal  deterministic  theory  would  be  too  complicated  to  be of 
value  in  practice. In particular,  time-varying  integral  equations  would  have 
to  be  solved  for  this  general  case.  It is better  to  limit  the  class of 
admissible  f i l tering  operations  at   the  outset ,  so  that  exact  practical  solutions 
a r e  obtained  for  the  class. If one views  all  linear  time-varying  filters  as a 
cer ta in   c lass ,  one realizes  that  :he choice of a class  is a rb i t ra ry .   There-  
fore,  it  is reasonable  to  choose  that  class of filters  which is sufficiently 
general  for  accurate  characterization,  but  which  also  allows  straightforward 
solution  for  the  optimal  filter  within  the  class. 

Let it be  assumed  that a network  configuration  such as that  shown  in 
Fig. 1 is to  be  used  for  characterization.  This  configuration  is  described 
by a set  of previously  specified  linear  constant-coefficient  networks  called 
component  filters,  followed  by a group of t ime-varying  gains.   For  the i f h  
fi l ter ,   the  impulse  response is given  byhi(P)and  the  transfer  function is 
given  by Hi(,/#). The  weighted  outputs are  summed  to  produce  the  model 
output, 9 (t) , The  output of this  network  configuration  may  be  expressed  as 
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Upon comparison of equation (9) with  equation (1) it is seen  that   the   ser ies  
may  be  represented  by 

Therefore,  this  network  configuration  represents a subclass of the  class of all 
time-varying  linear  networks. It has  the  great  advantage of allowing  direct 
computation of the  time-varying  impulse  response  from  the  time-varying 
gains.  Since  the  impulse  response of each  component  filter is fixed,  it is only 
necessary  for  any  given  instant of t ime, t , to  weight  these  impulse  responses 
with  the  gains, ai( t ) .  , and  add  the  results.  Thus,  the  model  or  network 
configuration is directly  translatable  into  the  time-varying  impulse  response 
description. 

This  property of direct   translation  to  impulse  response is not  generally 
valid  for  networks  other  than  those  that  can  be  drawn  in a configuration  like 
that of Fig. 1. To  i l lustrate  this  fact ,   assume  for  example  that   the  t ime- 
varying  gains  were  placed  ahead of the  fixed  component  filters.  In  this  case 
the  response, g ( t )  , is given  by 

Clearly,  the  time-varying  gains  cannot  be  removed  from  the  integrals.  The 
time-varying  impulse  response  therefore  cannot  be  written  as a sum of 
separable  products;  that  is,  in  general, 

where b;(t) and y i ( t )  are  arbitrary  functions  each of a single  independent 
variable. 
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The  model of Fig.  1 also  allows the straightforward  determination of the 
time-varying  transfer  function.  Consider  that  equation (8) may  be  rewrit ten 
such that 

Upon comparison of equation  (14)  with  equation  (4),  it is seen  that   the  series 
may  be  represented  by 

Once  again,  the  separability  property is valid  for  this  subclass.  The  time- 
varying  transfer  function  can  therefore  be  obtained  at  any  time, t ,  by 
weighting  the  fixed  transfer  functions, H ~ G ~ . J )  , with  their  corresponding 
gains, ai(t) , and  summing  the  results. 

It  has  been  shown  that  the  modeling  configuration of Fig. 1 allows  the 
straightforward  determination of the  time-varying  impulse  response  or  time- 
varying  transfer  function..  Therefore,  there  is  no  problem,  in  theory,  in 
translating  this  model  into  usable  mathematical  quantities. 

The  question now arises  as  to  whether  the  model  configuration  chosen is 
restrictive  in  the  sense  that  it   represents a sufficiently  broad  class of f i l ters  
for  characterizing  the  human  operator.  The  results of other  investigators 
indicate  that, i f  the  fixed  component  filters  are  proper1  chosen,  relatively 
high accuracy is obtainable  in  characterizing  systems. 9 In  addition, 
human  operator  characterization  may  be  accomplished  with  five  or  six  compo- 
nent  filters i f  they are  properly  chosen. 1 It  may  be  concluded  from  previous 
work  that  the  choice of the  modeling  configuration of Fig. 1 is not  significantly 
restrictive.  The  choice of the  filters w i l l  be  discussed  in  greater  detail   in 
the  section on experimental  verification. 

The  concepts  described  above  for  linear  filters  can  be  extended  in a 
logical  manner  to  cover  nonlinear  networks.  However,  in  the  nonlinear  case, 
Fourier  (frequency  domain)  representations  appear  to  be of l i t t le  practical  
value, so  that  time  domain  representations  only w i l l  be  used.  In  dealing  with 
nonlinear  networks,  general  classes  must  be  specified  within  which  the 
admissible  networks  must  be  described. One widely  used  set of c lasses  is the 
set  of N .  classes.  lo  The  response of a c lass  N, network  to  an  input X(,?) 
is given by 
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where J [.-X(t- q ) , X ( t - $ ) ,  "; X(t-rn) ,  Z,, 2,, "., Yn, t] is the  so-called  t ime- 

varying  kernel  function. A s  n increases ,   the   c lass  of networks  becomes 
more  general .   Moreover,   the  class,  /l/n , of networks  includes  all  lower 
c lasses ,   that  is, fin-1, Nn-,,* **fit. 

If the  configuration of Fig. 1 is used,  the  solution  for  the  optimal  coef- 
ficients is no more  difficult i f  the  fixed  component  networks  are  nonlinear 
than if they  are   l inear .  As a consequence,  the  previous  results  can  be  easily 
extended.  Suppose  that  the  specified  linear  component  filters  are  replaced  by 
nonlinear  filters  described  by 

Each  output Xi&.. is  then  the  result of a specified,  constant  coefficient  class 
r/n nonlinear  filtering  operation. Upon comparison of equation  (16)  with 

equations ( 7 )  and  (17),  it  is  seen  that 

The  major  problem  which  exists  when  dealing  with  nonlinear  networks 
for  characterization  is  the  difficulty of specifying  these  networks  in  relatively 
simple  form.  It  is  clear  that  the  kernel  function, J , is a function  with 2 n +  I 
independent  variables. As  a resul t  of this  higher  dimensionality,  translation 
of a  known characterization  model  into a mathematical  function is usually a 
difficult  task.  However,  in  those  cases  where a modeling  description  only is 
required,  the  nonlinear  approach  can  be  readily  applied. 

Uncertainty 

It is necessary  to  recognize  the  basic  problem of uncertainty  before 
attempting  to  understand  the  theory of deterministic  characterization.  It  has 
been known for  many  years  that  basic  uncertainties  exist  in  the  simultaneous 
measurement of cer ta in   pairs  of quantities.  The  first  uncertainty  was  dis- 
covered  in  atomic  physics. l1 It  was  shown  that  there is a lower  bound  to  the 
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accuracy  with  which  the  position  and  momentum of an  e lectron  may  be  s imul-  
taneously  determined.  The  more  accurately  the  position of an   e lec t ron  is 
determined,  the  less  accurately  the  momentum  can  be  determined,  and  vice 
versa.   Uncertainties  also  exist   in  communication  theory.  An example is the 
fact  that  the  product of the  bandwidths of a Four ie r   t ransform  pa i r  is always 
greater  than  or  equal  to a fundamental  constant. l 2  Another  uncertainty  in 
communication  theory  exists  in  the  detection of a properly  defined  non- 
stationary  power  spectral   density of a signal. l3  The  asser t ion is now made 
that  there is also  an  uncertainty  in  the  characterization of the  time-varying 
dynamics of the  human  operator.  This  uncertainty is fundamental  and  cannot 
be  circumvented.  It is not  particularly  detrimental   to  the  characterization 
problem,  but  it   does  require  that,  in  addition  to  the  performance  measure 
chosen,  an  arbitrary  constant  must  also  be  chosen  which  resolves  the  compro- 
mise  between  the  error  in  characterization  and  the  rate  at   which  the  transfer 
character is t ic  is allowed  to  change  with  time.  Thus,  the  theory wi l l  permit  
the  error  to  be  made  as  small   as  desired,   but  then  the  t ime  variation of the 
transfer  characterist ic  may  be  excessive.   In all cases ,  a compromise  must 
be  reached  between  error  in  characterization  and  allowed  time  variation of 
the  t ransfer   character is t ic .  

In  the  development of the  theory  emphasis w i l l  be  placed  upon a pract ical  
derivation  which  accounts  for  this  uncertainty.  The  technique  by  which a 
solution is obtained  is  that of constraining  the  degree of variability of the  time- 
varying  gains of the  characterization  model. No attempt wi l l  be  made  to 
rigorously  prove  the  existence of an  uncertainty;  however,  in  the  steps  which 
must  be  followed  to  arrive  at a practical  solution  to  the  deterministic  charac- 
terization  problem,  i t  w i l l  become  evident  that  an  uncertainty  does  exist. 

DETERMINISTIC  CHARACTERIZATION THEORY 

The  central  problem of the  theory of deterministic  characterization is 
that of the  optimal  adjustment of the  chosen  mathematical  model so as  to  mini-  
mize  the  error  between  the  output of the  model  and  that of the  human  operator. 
Both  the  input  signal  record and the  output  signal  record  are  assumed  to  be 
available  over a given  time  interval  for  which  the  characterization  is  desired.': ' 
The  problem of particular  interest   herein is that of developing a time-varying 
characterization.  Therefore,  in  the  modeling  configuration of F ig .  1 ,  the 
gains  following  the  fixed  component  filters  must  be  allowed  to  vary  with  time, 
and  it is   this  set  of time-varying  gains  which  must  be  obtained. 

It is   necessary  init ially  to show that i f  the  t ime-varying  gains  are 
unconstrained,  the  solution  for  minimum  error is trivial.  The  trivial  solution 
results  from  the  uncertainty  principle. 

+The  theory w i l l  be  developed  for  the  non-real-time  solution  and  then wi l l  be 
modified  for  the  real-time  solution. A non-real-time  solution is one in  which 
the  characterization  may  be  obtained  after  the  data  for  the  entire  length of 
the  tracking  task  have  been  gathered. A real-time  solution is one  in  which 
the  characterization  must  be  obtained  while  the  tracking  task is in   progress .  
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Let 

where 

e(t) is the  error   in   character izat ion as a function of t ime, 

y(t) is the  output of the  human  operator  (the  desired  output of 
the  model),  and 

input  signal ~ ( t )  which  the  human  operator is tracking. 
X i ( t )  is the  response of the i* fixed  component  filter  to  the 

A performance  measure  which  allows  minimization of the  error  while  simul- 
taneously  allowing  analytical  solution of the  problem is the  integral of the 
squared  error  over  the  interval  for  which  data is taken.  Therefore,  let 

,g P f dt 
0 

where 8 is the  performance  measure  to  be  minimized, 

t= 0 is the  initial  point,  and 

t = 7- is the  final  point  in  the  time  interval  over  which a solution 
is desired.  

This  problem is of the  form 

where f is given by squaring  both  sides of equation  (19).  The  critical 
values:% of this  equation  are  given by the  set of equations 

Upon  evaluatior, of this  set of equations,  one  obtains 

This  condition is satisfied i f  
K 

*A critical~value-is  defined  to  be a maximum, a minimum, or an  inflection 
point. 
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It is also  satisfied  for  any  value of aa(t) if x ~ ( t ) = O .  The  optimal  condi- 
tions  indicate  that  the  weighted  outputs  must  equal Y(t) . Thus,  instead of 
having  the  time-varying  gains  follow  the  changes  in  the  human  operator's 
dynamics,   the  gains  simply  track  the  signal  i tself ,   Moreover,  i f  at t ime t 
t h e r e   a r e  p component  filters  with  nonzero  outputs,  then  there  are (9- f )  
infinities of possible  solutions all giving  the  same  value of minimum  error.  
Thus,  the  solution is not  unique.  It  can  be  concluded  that, as a resul t  of 
rapid  gain  variations  and  the  infinities of possible  solutions,  that  this  charac- 
terization  technique is trivial. 

At the  opposite  extreme of this  basic  uncertainty is the  case  in  which 
the  time-varying  gains  have  been  constrained so severely  that  they  become 
constants  within  the  characterization  interval.  This is the  case  in  which  all 
information  about  the  time  variation of the  dynamics is sacrificed.  Let 

where  each ai is a constant.  Then, i f  the  same  performance  measure is 
minimized,  the  following  condition  for  the  optimal  gains  must  be  met: 

where 

This  is  a meaningful  solution,  but a degenerate  one  for  the  time-varying  case, 
since no information  about  the  time  variation is obtained.  It  represents  the 
second  extreme  case of the  uncertainty. 

The  above  two  extreme  problems  suggest  that a more  useful  solution  to 
the  time-varying  characterization  problem  can  be  obtained i f  the  gain  changes 
are   constrained,  but  not so heavily as to  be  constant.  This  type of problem 
can  be  cast   in  the  form of a calculus-of-variations  problem  by  including  the 
squared  values of the  rate-of-change of parameters  in  the  performance 
measure.   For  example,  one  might  choose  the  performance  measure, 

where RZ is the  positive  constant  which  determines  the  relative  weight  to  be 
placed  upon  error, as compared  with  rate of parameter-variation.  Since,  in 
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general,  both  the  error  and  the  rate-of-change of all parameters  cannot  be 
made  zero  over  the  time  interval 01 t ,c T , the  best   compromise  (for a 
given  choice of Rz ) is given  by  an  extrema1 of the  calculus-of-variations 
solution  to  this  problem. 

Unfortunately,  the  calculus of variations  (when  applied  to  this  problem) 
yields a solution  which,  although  meaningful, is very  difficult  to  use.  Briefly, 
the  solution is given  by a set  of simultaneous  Euler  equations  14 

under  the  assumptions  that 

either a~(0)  is specified  or &~(0) = 0 

and  that  ul(T)is  specified  or &/ (7) = 0 

Upon evaluating  the  Euler  equations, a set  of simultaneous,  unstable  second- 
order,  time-varying  differential  equations  results: 

,.!‘=I, Z, K (31) 

which  can  be  rearranged  such  that 

No general   f i rs t   in tegral   exis ts   for   this   set  of equations,  since  the  functions 
y(t) and  all X i ( t )  cannot  be  generally  written  in  analytical  forms. A s  a 

consequence,  the  above  set of simultaneous,  unstable,  two-point  boundary 
value  differential  equations  must  be  solved  directly.  It is believed  that  this 
type of solution is too  difficult  to  be of practical  value,  even  though  the  per- 
formance  measure  properly  constrains  the  parameter  variation  for  the  t ime- 
varying  characterization  problem. 

The  problem of the  deterministic  theory  can now be  considered  to  consist 
of modifying  the  constraint  on  the  parameter  variation so a s   t o  allow a more 
practical  solution  for  the  time-varying  gains.  It is possible to solve  the  prob- 
lem of the  deterministic  theory  in  another  way  such  that  the  solutions  obtained 
a r e  not  compromised.  Moreover,  with  the  use of this new constraint,  the 
time-varying  gains  are  easily  computed  after a se t  of simultaneous  linear 
algebraic  equations is solved.  Consequently,  the  approach is well-suited  to 
practice.  
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The  method  to  be  used is a so-called  "fixed  form"  method  in  which a 
straightforward  solution  can  always  be  obtained.  l5  Let  the  performance 
measure of equation (20) again  be  used.  This  measure is to  be  minimized, 
but  the  time-varying  gains  are  to  be  subjected  to  the  fixed  form  constraint 
given  by 

where  each .Pmj is a  known,  fixed  function  of  time,  and  each Ern,! is a 
constant  which is to  be  determined  such  that  the  performance  measure is 
minimized.  Thus,  the  problem  is  constrained by forcing  each  time-varying 
gain  to  be a linear  combination of a set  of  known time  functions.  Usually,  the 
same  set  of time  functions  may  be  used  for  each  time-varying  gain, so that 
the  constraint  may  be  written  in a simpler  form  without  serious  limitation: 

Of course,   the  effect  of  this  constraint  on  the  solution  for  the  optimal  set of 
gains  is  heavily  dependent  upon  the  choice of the /?m(g'~ . This  point 
requires  extensive  discussion  and wi l l  be  considered  after  the  minimization 
process  has  been  described. 

If equations (34) and ( 1 9 )  are  substituted  into  equation (20),  the  perform- 
ance  measure  after  manipulation  can  be  written  as 

In  order to simplify  the  notation,  let 

and 

Substitution of equations  (36)  and ( 3 7 )  into  equation  (35)  yields  the  fundamental 
equation  which is to  be  minimized: 
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The  minimization  will  yield  the  optimal  set of  which w i l l  then  allow  the 
computation of the  time-varying  gains, ai(t) . ::: Thereafter,   the  t ime- 
varying  transfer  characteristic  can  be  computed, 

The  minimization  procedure  can  be  more  easily  understood i f  the   t e rms  
of equation (38)  are  regrouped.  Let  it   be  assumed  that  an  arbitrarily  chosen 
parameter ,  , is   to  be  varied so as  to  minimize  error.   Then  an  appro- 
priate  regrouping of equation (38 )  in   t e rms  of powers of yields aPJ 

In  this  equation,  the  appearance of an  inequality  in  parenthesis  below a summa- 
tion  indicates  exclusion of that  double  index  from  that  summation. It i s  
evident,  from  this  regrouped  expression,  that  the  performance  measure is a 
quadratic  (nonrotated  parabolic)  function of the  coefficient, a&’. A neces- 
sary  expression  for  the  coefficient cyp-p for  which  the  critical  values of the 
performance  measure  occur is obtained  by  equating  the  partial  derivative of 
the  performance  measure  with  respect t o  to  zero;  thus @PI 

Effecting  the  indicated  differentiation of 6 yields 

or  equivalently, 

~ 

:::NO attempt is made  to  orthogonalize  equation (37 )  s o  as  to  simplify  equation 
(38 ) .  Orthogonalization  in  the  time-varying  case  is  as  difficult  as  obtaining 
the  solution  for  the  minimum. It is  therefore of no value. 
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Equation  (41)  shows  that  the  value of a/ 1 for  which a single  critical  value of 
the  performance  measure  (error)   occurs  is given by a linear  combination of 
the  other  coefficients.  Proceeding  similarly  yields a necessary  expression 
for  the  critical  value of each  coefficient. A set  of K(L + I) simultaneous 
linear  algebraic  equations  with K(L + I) unknowns results:  

P 

It is seen  that  the  solution  for  the  constants,  and  therefore  for  the  time-varying 
gains, is given  by  simultaneous  linear  algebraic  equations,  instead of simul- 
taneous  unstable  boundary-value-differential  equations,  as  in  the  calculus-of- 
variations  approach. 

Appendix B of this  report   consists of a proof  that  the  solution of the 
above  algebraic  equations  always  yields a set  of constants  which  produce  the 
minimum  value of the  performance  measure, 0 . Thus,  the  optimal  value 
of 6 is given  when  the  constants  obtained  from  equations  (43)  are  used. If 
the  equations  are  linearly  independent, a unique  minimum  exists. If they a r e  
linearly  dependent, a single  minimum  value of error   yet   exis ts ,  but is  given 
by a family of solutions,  any one  of  which is  satisfactory.  

To ascertain  that  the  critical  value  for  each  coefficient  is a minimum, 
it  must  be  shown  that  the  second  partial  derivative  with  respect  to  each  coef- 
ficient is greater  than  zero.  (This  condition  insures  that  the  parabolic 
function of each  coefficient  possesses a minimum. ) The  second  partial  deriva- 
tive is 

If ,f$,ct,' i s   ze ro  only  at  isolated  points  in  time  and  if  the  output of the l*h 
component  filter  is  non-zero  over  some  finite  interval,  then  this  second 
partial  derivative  is  greater  than  zero.  Accordingly,  as  long  as  each  com- 
ponent filter  has  some  output  signal, a minimum  exists  for  each  coefficient, 
and is given  by  the  solution of the  equations of expression  (43).  Use  will  be 
made of this  fact  in  describing  the  subsequent  iteration  method of solution. 

Both a real-time  and a non-real-time  technique of characterization  will 
be  developed  from  the  above  concepts.  The  solution of the  non-real-time 
algebraic  equations  will  generally  involve  the  determination of a large  number 
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of constants, C Y ~ J ' S .  Consequently,  close  control of error  propagation  in  the 
solution is essential.  The  previous  mathematical  development is sufficient  to 
enable a straightforward  derivation of a convergent  iterative  technique  for  the 
solution  when  the  number of constants  to  be  determined is large.  A straight- 
forward  fast-running  digital  computer  program  can  be  written  for  use  in 
effecting  the  actual  solution. 

Equation  (41)  yields  the  optimal  value of if all  the  other  coeffi- 
cients  are  f ixed  while aPl is being  adjusted.  This is the  key  to  the 
convergent  iterative  procedure.  Assume  that  an  initial  set of the  coefficients 
is given,  and  then  an  arbitrary  coefficient a,,a(rJ is changed  to  the  value 

rt // obtained  from  equation  (41). If the new value  is  different  from  the 
initial  value,  the  corresponding  value of the  measure of performance, B ( r t r ) ,  
will  be  definitely  less  than  the  original  value of the  measure of performance, 

expression (43) are  linearly  independent. If the  equations  are  dependent,  the 
initial  choice of the  coefficients  determines  which  single  solution of the  family 
is eventually  obtained.  Then,  the  next  coefficient  is  changed  according  to  its 
corresponding  optimal  condition  equation. As  long as  the  coefficients  change 
by  continuation of this  process,  the  performance  measure  will  decrease. If, 
by  definition,  an  iteration  cycle  consists of the  adjustment of each  coefficient 
once,  then  as  long  as  one  or  more  coefficients  change  during  each  iteration 
cycle, r , the  performance  measure  at  the  end of each  cycle is monotone 
decreasing.  Since  the  measure  must  be  positive  or  zero, a lower bound exists. 
Consequently, B(r) is  convergent  as r approaches  infinity. 

"pp( 

8(r) . This  decrease  in  error  results  whether  or  not  the  equations of 

It  must now be  shown  that  the  coefficients  do  indeed  change  with  each 
iteration  cycle  until  the  process  converges  to  an  optimal  set of coefficients. 
If the  coefficients  do  not  change  for  an  entire  iteration  cycle,  then  the  set of 
equations of expression (43) has  been  satisfied. But if a l l  of the  equations  are 
satisfied,  an  optimal  solution  (which  was  shown  to  be  given by the  solution of 
these  equations)  has  been  reached.  Thus,  the  coefficients  must  change  until 
an  optimal  solution  is  obtained. 

Equation (38) yields  the  value  of  the  performance  measure, 6 , after 
any  given  number  of  iteration  cycles. If the  error  is   computed  from  t ime  to 
t ime  in  the  i teration  process,   the  rate of convergence  and  final  error  can  be 
determined. 

The  previous  discussion  has  described  in  detail  the  fixed  form  approach 
as  applied  to  the  human-operator  characterization  problem.  It  is  clear  that 
this  method  always  leads  to a solution  for  the  exact  minimum of the  properly 
specified  (and  constrained)  problem.  Indeed,  the  technique  is  practical,  since 
linear  simultaneous  algebraic  equations  are  involved,  whose  solution  can 
always  be  obtained  by  an  iterative  technique. It has  been  shown  that  there is 
no  possibility  for  solution  instability;  moreover,  the  solution  must  always 
converge  to a unique  value of minimum  error .  

The  fixed-form  method  leaves  an  important  question  unanswered.  Basi- 
cally,  the  fixed-form  method is a solution  framework  to  which  the  particular 
time-varying  characterization  problem  can  be  fitted.  The  question of the 
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choice of the  fixed  time  functions ,&,e) is crucial,  since  these  functions 
determine  the  type of constraint  which is being  specified.  This  constraint 
implicit ly  determines  the  compromise  between  error  and  t ime-variation of 
the  gains.  Moreover, it determines  the  amount  and  type of smoothing  to  be 
used  along  each  axis  in  the  detection of either  the  time-varying  impulse 
response or time-varying  transfer  function  (for  the  linear  case). As a conse- 
quence of the  influence of the  constraint  upon  smoothing,  both a non-real-time 
solution  and a real-time  solution  can  be  developed.  Both  of  these  solutions 
will  be  discussed  herein.  In  each  case a particular  set  of constraining  time 
functions w i l l  be  chosen  which  appear  to  offer  the  most  advantages  in 
characterization. 

Non-Real-Time  Solution 

If i t  is assumed  that  both  the  human  operator's  entire  input  signal  and 
the  entire  output  signal  are  available  in  the  interval 0 s  t I 7- , these  data  can 
be  used so  as  to  minimize  the  error  between  the  output of the  model  and  that 
of the  human  operator. As  a consequence,  one  could  expect  smaller  errors 
in  the  non-real-time  case  than  in  the  real-time  case,  since  instantaneous 
future  information is available  in  the  non-real-time  case. 

An important  property  which  the  fixed-time  functions  must  possess  in 
the  non-real-time  case  is  that  they  treat  each  point  in  the  interval  between 0 
and 7 equally.  In  other  words, no single  point  or  interval  should  be  weighted 
more  heavily  than  another. Also of importance  is  the  fact  that  the  functions 
must  limit  the  changes  in  the  time-varying  gains  in  an  acceptable  fashion. 
Lastly,  it  should  be  possible  to  change  the  fixed-time  functions  in a convenient 
way, so  that  the  compromise  between  time-variation of the  gains  and  error 
in  characterization  may  be  set  at  any  reasonable  level. 

Experimental  investigation  has  shown  that a set  of staggered  triangular 
interpolation  functions  is  quite  adequate  in  satisfying  the  above  requirements. 
These  triangular  functions  are  given  by 

t 45) 
I O ;  elsewhere 

where  i t  is assumed  that  the  interval of integration of the  performance  measure 
runs  from t = O  to t = T  . 

When weighted  and  added,  these  functions  are  capable of synthesizing  the 
functions ai(t/ , which are  then  made up of connected  straight-line  segments. 
(See  Fig. 2. ) 

Of course,  the  triangular  fixed-time  functions  do  not  treat  each  point 
within  the  interval  from t= 0 to t = 7- exactly  equally.  The  synthesized 

18 



waveforms  have  discontinuous  first  derivatives  at  the  points t =- 
mT 
L ;  

m = O ,  /,2; * e, L .. It appears  that  the  only  set of fixed-time  functions  which  does 
treat  each  point  in  the  interval  equally is the  finite  set of Fourier   ser ies   com- 
ponents  with  fundamental  period of T seconds.  However,  the  use of a finite 
Four ie r   se r ies  of fixed-time  functions  has  the  disadvantage of yielding a 
"Gibbs  phenomenon",  or  ripple  effect,  which  would, no doubt,  be  more  detri- 
mental  than  the  effect of the  discontinuous first derivative  in  the  straight-line 
synthesis  obtained  with  the  triangular  functions. 

The  use of the  triangular  functions  affords a great  advantage  in  the  com- 
putation of the  quantities, #,,,inj . If equation (45) is substituted  into 
equation  (37),  the  resulting  equation is 

where  the  left-hand  bracketed  quantity  has  value  only  in  the  interval 

(m-I) 7- 5 t s(m + 1); 
L 

and  the  right-hand  bracketed  quantity  has  value  only  in  the  interval 

Consequently, 

= O  when  the  integers m and w are  such  that  1.. - nl Z R  (47) 

Equation  (47)  allows a great  reduction  in  the  number of averages  that  must  be 
obtained.  This  reduction is very  important  because of the  lengthy  programs 
which are  required  to  compute  transfer  characterist ics.  

The  base  length  of  the  triangular  fixed-time  functions  can  be  varied  by 
changing  the  value of the  integer, L . Consequently,  the  choice of the  value 
of L determines  the  compromise  which  is   reached  between  error  in  charac- 
terization  and  the  amount of t ime-variation  to  be  tolerated  in  the  transfer 
character is t ics .  

It is certainly  true  that a wide  variety of sets  of fixed-time  functions 
could  have  been  chosen  for  synthesizing  the  time-varying  gains.  However,  it 
appears  that   each  set   has  some  disadvantages,   and  therefore  i t  is probably 
best  to  choose  that  set  which  has  computational  advantages. No doubt, i f  a set  
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of perfect  fixed-time  functions  were  available,  their  use  in  solution  would  be 
as difficult as solving  the  unstable  boundary-value  problem  posed  earlier. 

The  non-real-time  approach is more  suited  for  digital  computation  than 
it is for  analog  computation  because of the  storage  capacity of digital  com- 
puters.  It is only  necessary  to  read  in  the  input  record  and  output  record of 
the  human  operator.  The  steps of the  digital  computation  are  the  following: 

(1) The  input  record is fi l tered by  digital   f i l ters  which  represent  the 
chosen  set of fixed  component  filters,  thus  producing  the  wave- 
forms  s, ( e ) ,  = f ,  Z, - - -, K. 

The  sets of functions &i and &;fiJ- are  computed.  (This 
computation wi l l  require  the  choice of the  integer, L , which 
determines  the  allowable  variation  in  the  time-varying  gains. ) 

These  gains  are  used  to  compute  the  time-varying  gains. 

The  time-varying  gains  are  then  used  to  compute  the  time- 
varying  impulse  response  and  time-varying  transfer  function 
over  the  interval. 

Real-  Time  Solution 

In  the  real-time  solution  to  the  optimal  deterministic  characterization 
problem,  the  performance  measure  and  form of constraint  must  be  modified 
somewhat.  These  modifications  are  dictated by the  fact  that  the  real-time 
problem is a two-axis  (two  independent  variable)  problem:  the 2 axis 
designates  the  running  data  axis  and  the 8 axis  designates  the  present  or 
real-t ime  axis.   The  performance  measure  must  be  chosen  such  that  no 
future  values of data  are  required  or,   in  other  words,   the  upper  l imit  of the 
integration  over  the  variable A must  be ,f . Furthermore,   i t   must  be 
assumed  that  since  each  point A w i l l  eventually  be  treated  as  the  present 
t ime t , that  the  values of the  time-varying  gains  can  only  be  set  at  the 
present  instant. In other  words, one  cannot go  back  into  the  past  and  readjust 
the  gains,  nor  can  one go forward of the  present  time  and  adjust  the  gains. 
Only the  present  values  are  free  to  be  chosen.  The  present  choice  may, 
nevertheless,  be  based  upon  both  present  and  past  data.  These  requirements 
are  al l   incorporated  in  the  chosen  performance  measure,   which is 
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where 

In equation  (48), (r) is the  impulse  response of an  arbitrary  smoothing 
filter.  In  general,  this  filter  should  be  chosen  such  that  it   weights  present 
and  recent  past  information  most  heavily,  and  eventually  tapers  the  weighting 
to  zero  in  the  remote  past.  Equation  (49) is the  error  equation  in  which  the 
time-varying  gains  are  assumed  to  be  functions of both  the  running  data  and 
the  present  time.  This  notation  for  the  time-varying  gains  may  seem  to  be 
somewhat  unusual;  however,  it  places  in  clear  view  the  effect of the  constraint 
which is yet  to  be  chosen.  Moreover, it is certainly  true  that ,   in  general ,   the 
gains  are  functions of the  data  involved  and,  since  they  change  with  time,  are 
also  functions of the  present  time.  Accordingly,  the  two  independent  variables 
are   appropriate .  

In  order  to  obtain a meaningful  solution  to  the  problem,  it is again  neces- 
sary  to  specify a constraint  upon  the  gains ai (A ,  t )  , because of the  uncer- 
tainty  principle.  This  constraint  must  be  such  that  it  maps  the  gains  which 
are  functions of two independent  variables  into  functions of  a single  independent 
variable,  i! . In order  to  understand why the  constraint  must  produce a 
function of the  variable t only,  the  form of the per formnce   measure   wi th  
equation (49)  substituted  into  equation  (48) is considered. As long as  cZi(A,t )  
is  allowed  to  be a function of both  the  variables A and 8 , the  solution is 
trivial,  since  the a; can  be  chosen  at  each  present  instant,  such  that  the 
performance  measure is zero.  Consequently,  unless  the  constraint  forces  the 
gains  to  be  functions of t only,  the  solution  is  trivial.  In  consideration of 
the  above  facts,  the  constraint  to  be  chosen  is  the  following 

that is, a i ( A ,  t!) is to  be  constrained so  as  to  be  equal  to a constant  over h , 
the  constant  being  rechosen  at  each  instant of present  t ime, t . 

It  may  seem  that  the  original  postulation of two-dimensional  gains  and 
the  subsequent  constraint  which  returns  them  to  one-dimensional  functions is a 
somewhat  academic  exercise.  The  justification  for  performing  this  group of 
steps is that a valid  mathematical  argument  can  be  presented  which  places  in 
evidence  for  the  first  time  the  effect of the  uncertainty  principle  in  the  real- 
time  problem.  Moreover,  the  use of the  performance  measure  and  constraint 
as postulated  above w i l l  now yield  to  an  exact  minimization  procedure. 

Upon carrying out the  minimization  procedure  in a manner  precisely 
analogous  to  the  procedure  used  in  the  non-real-time  solution, one obtains  the 
result  that  the  minimum  value of the  performance  measure,  6(t)  , is 
obtained  when 
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where 

and 

Once  again,  only  the  solution of algebraic  equations is required.  The  equations 
vary  with  time  and  therefore  must  be  re-solved at each  instant.  However, it 
is clear  that  the  variable t is only a parameter  in  the  solution. 

It  can  be  shown,  as  in  the  non-real-time  case,  that  the  solution of the 
algebraic  equations  yields a value of the  performance  measure  which is less  
than,  or  equal  to,  the  value  for  any  other  setting of the  time-varying  gains. 
Therefore,  the  minimum  value of the  performance  measure is obtained at each 
instant of t ime, t . 

The  extreme  ease  with  which  the  data, <(t,' and &j(t) can  be  ob- 
tained  makes  this  real-time  solution  highly  practical. F ig .  3 is a diagram 
showing a physically  realizable  technique  whereby &(t) and 2$(t) may  be 
computed  by  analog  (or  ordinary  filtering)  components. 

The  real-time  solution  has  been  obtained  without  specifying  in  detail  the 
fo rm of the  smoothing  filter,  whose  impulse  response is given  by h(r) .  Thus, 
the  information  may  be  weighted  in  many  different  ways.  The  simplest  and 
most  easily  realizable  filtering  operation is that  obtained  by  use of a single 
low-pass  filter.  In  this  case, 

It  can  be  realized  by a single  operational  amplifier. If this  form of filter is 
used,  then To determines  the  compromise  which  is  reached  between  error 
in  solution  and  rapidity of variation  in  the  t ime-varying  gains.  A s  2;; be- 
comes  larger,   the  gains  vary  slowly  and  the  error  is   larger;  and a s  ro 
becomes  small ,  the  gains  vary  rapidly  and  the  error  becomes  small. 

It should  be  mentioned  that  the  real-time  solution  has  the  advantage of 
having  only  one  unknown  in  the algebraic  equations  for  each  time-varying  gain. 
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At  any  instant of t ime,  it is only  necessary  to  solve  linear  algebraic 
equations  with  perhaps  six  unknowns. Of course,  the  equations  must  be  re- 
solved at each  instant of time.  The  fact  that a relatively  small  number of 
unknowns exists  in  the  real-t ime  case is one of the  advantages  obtained  by 
sacrificing  knowledge of future  information.  Counterbalancing  this  advantage 
is the  disadvantage  that  the  real-time  solution w i l l  produce  somewhat  larger 
errors  than  the  non-real-t ime  solution. 

EXPERIWNTAL  VERIFICATION 

An extensive  experimental  study  was  performed  to  verify  and  determine 
the  usefulness of the  previously  described  theory of deterministic  charac- 
terization.  The  theory  as  described  in  this  report  is exact,  and it is therefore 
only  necessary  to  insure its correctness .  An equally  important  goal is the 
determination of the  usefulness of the  techniques  described  for  human-operator 
characterization. It is believed  that  both  objectives  were  reached  in  this 
experimental  study. 

The  experimental  study  consists of three  main  parts.  They  are: 

(1)  Characterization of a  known time-varying  network  whose 
transfer  function  is   similar  to  that  of the  human  operator. 
The  time-varying  network  is  operating  in  place of the  human 
controller  in a closed-loop  control  system,  with  an  input 
signal  which is similar  to  that  encountered  in  man-machine 
systems.  Both a non-real-time  and a rea l - t ime  charac te r -  
ization  are  performed.  The  system  block  diagram is shown 
in Fig.  4. 

( 2 )  Characterization of a human  pilot  in  one  axis of a two-axis, 
closed-loop  tracking  task  without  motion  cues.  These  data 
are   taken  f rom a NASA Langley  simulation. In  the  non-real- 
t ime  case,   the  trade-off  between  characterization  error  and 
time-variability of the  transfer  characterist ic  is   adjusted and 
studied. In  the real-t ime  case,  a single  characterization is 
performed.  The  system  block  diagram  is  shown  in  Fig. 5. 

( 3 )  Characterization of human  operators  in  an  interval of t ime 
during  which  an  abrupt  change  in  follow-up  dynamics  occurs. 
Half-way  through  the  experiment,  the  follow-up  system is 
changed so as to  force  the  human  operator  to  change  his 
mode  of  tracking.  Both  non-real-time  and  real-time  charac- 
terizations  are  performed  over  an  interval  which  includes  the 
change of mode.  The  system  block  diagram is shown  in 
Fig. 6. 
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All of the  processing of data  was  performed  using a modern  high-speed 
digital  computer. :: However,  the  input  data  were  obtained  using  analog  com- 
puter  equipment  in  combination  with a display  and  control-stick  arrangement. 
As stated  earlier,   in  practice  the  non-real-t ime  method is more  suited  to 
digital  computation,  and  the  real-time  method is more  suited  to  analog  or 
special-purpose  digital  computation.  However,  the  present  study of both 
methods w a s  performed on the  digital  computer so that  advantage  could  be 
taken of the  subroutines  that  are  common  to  the  two  methods. 

Solution of the  algebraic  equations  for all non-real-t ime and real- t ime 
characterizations  was  performed  by  the  i teration  technique  described  in  the 
previous  section.  The  number of unknown coefficients  varied  from 7 in  the 
real- t ime  case up to a maximum of 105  in  the  non-real-time  case.  (The  num- 
be r  of algebraic  equations  corresponds  to  the  number of unknowns.)  In  ever 
case  the  i teration  process  converged  rapidly  to  the  minimum  error  value (a: 

redicted  in  theory),  yielding  the  optimal  set of coefficients. No instabil i ty  or 
fndesirable  characteristics  were  noted,  even  though  the  iteration  technique  was 
used  for  approximately  1000  different  sets of algebraic  equations.  Fig. 7 
shows a typical  plot of error   in   character izat ion  versus   number of i teration 
cycles  for  the  real-time  case  (with 7 unknowns).  Fig. 8 is typical of the 
e r r o r  as a function of number of i teration  cycles  for  the  non-real-t ime  case 
(with  91  unknowns).  The  rate of convergence  was  found  to  decrease  slightly 
as the  number of unknowns increased.  However,  in  all  cases  the  convergence 
is sufficiently  fast  to  allow  economical  solution. 

The  choice of the  fixed  component  filters is critical  to  the  accuracy of 
the  human  operator  characterization  problem. ::::: These  filters  must  be 
chosen  such  that  the  model  corresponding  to F ig .  1 is capable of accurately 
representing  the  human  operator.  Previous  work  in  network  and  human 
operator  characterization  has  shown  that a set  of so-called  Kautz  filters is capa- 
ble of accurately  characterizing  the  human  operator.  1 They are  given  in 
t ransform by 

The  constants, , in  the  numerators  are  chosen so as  to  make  the 
filters  orthonormal  over  the  semi-infinite  time  interval.  However,  since  this 
property  is  not required  in  this  deterministic  theory,  any  convenient  set of 
gains  may  be  used,  as  long  as  they  remain  fixed  throughout  the  entire  charac- 
terization  study.  The  poles Sf, 32,- . .,SK should  be  chosen so as  to  fall  

+This  digital  computer  has a cycle  time of 2. 0 microseconds,  and  it  had  high 
speed  input  and  output  capabilities.  The  computer  runs  for  the  complete 
solution  required  from 5 to 12 minutes. 

::::‘In this  experimental  study,  only  linear  fixed-component  filters  were  used. 
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within  (and  bracket)  the  region of the  frequency  axis  in  which  the  poles of the 
human  operator  are  believed  to  lie. If the  poles  are  logarithmically  spaced, 
then  minimum  over-all  characterization  error  will  result. 

In all these  experiments, 7 fixed-component  Kautz  filters  were  used. 
The  poles  were  set  at  the  values  1.  50,  2.31,  3.  56,  5.48, 8.44, 12. 99,  and 
20.01  radians  per  second,  which  are  logarithmically  related. 

An initial  computer  run  was  made  to  determine  whether  the  character- 
ization w a s  more  accurate  with  the  order of the  poles  increasing  in  frequency 
(starting  with 8, = 1. 50 r ad / sec )   o r  with  the  order of the  poles  decreasing 
in  frequency  (starting  with 8, = 20.  01 rad/sec) .   I t  w a s  found  that  the 
error   in   character iz ing a fixed-linear  network similar in  character  to a 
human  operator  was  the  same  for  both  runs.  Accordingly,  it  was  concluded 
that  the  usual  pole  order  (increasing  in  frequency)  was  satisfactory.  The 
ratio of the  integral  squared  error  to  the  integral  squared  output  signal  of  the 
fixed  network w a s  found to  be  0.000715.  Thus,  the  error  was  extremely 
small .  

In all of the  experiments,  the  input  (or  disturbance)  signal  to  the  control 
system  was  generated by low-pass  filtering of the  output of a wideband  noise 
generator.  The  low-pass  filtering  operation  was  varied  slightly  from one 
experiment  to  the  next,  as  indicated by  the  power spectral  densities  given 
in  Figs.   4,  5,  and 6. 

All  experiments  except  those  specifically  noted  were  performed  over 
1. 0 minute of tracking  data.  In  all  cases,  both  the  human  operator  (or  sub- 
stitute  network'),  as  well  as  the  characterizing  filters,  were  allowed  to  reach 
a "steady-state"  tracking  condition  directly  preceding  the  taking of data  for 
the  computation  interval.  In  other  words,  both  the  human  operator  and  the 
networks  possessed  memory of the  signal  prior  to = O .  This  procedure 
for  taking  data  made  it  possible  to  avoid a characterization  transient due to 
warm-up  immediately  following C = O .  :: 

In all non-real-time  characterization  runs,  the  triangular  interpolation 
functions  described by  equation  (45)  were  used.  The  integer, L , was  varied 
so as  to  adjust  the  compromise  between  error  in  characterization  and  time- 
variability of the  transfer  characterist ic.   For the real-time  case,  the  same 
smoothing  filter  was  used  for  all  runs. The filter  used  has  the  impulse 
response 

:: This  deterministic  theory  could  be  used  to  study  "warm-up"  characteristics 
of the  human  operator  at  the  beginning of a tracking  task.  It would only  be 
necessary  to  take  data  under  the  condition  that  the  input  signal  is  zero 
prior  to t =O. 
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which is tr iangular.   This  f i l ter   was  used  because it is very  easy  to  imple- 
ment on the  digital  computer  and  because  its  weighting of past  data  eventually 
decreases  to. zero.  The  results  obtained  using  this filter wi l l  be  very similar 
to  those  obtained  using a single  time-constant  filter  (equation (54) ). 

In all cases,   visual  presentation of the  transfer  characterist ics is in  
t e r m s  of a special  time-varying  step  response, It was  supposed  that  there 
is no  need  to  deal  with  the  human  operator's  time-varying  transfer  function 
in  this  experimental  study  because  the  conversion  from  impulse  response  to 
transfer  function is straightforward  and  requires  no  verification. On the 
other  hand,  the  time-varying  impulse  response  does  not  lend a great   deal  
of intuitive  insight.  Consequently, a special   step  response  characterist ic 
w a s  developed,  which  does  lend  insight  and is easily  computed.  This  special 
step  response is given  by 

where h($,r) is the  time-varying  impulse  response  as  defined  earlier. 
This  special  step  response is not  generally  equal  to  the  true  step  response 
of the  network  whose  impulse  response is  e) . In  order  to  use  the 
function S(& ?') for  computation of the  network  response  to  an  arbitrary 
signal, 5(t, C?"' should  be  partially  differentiated  with  respect  to 2" and  then 
used  in  equation (1). 

Lastly,  it  should  be  mentioned  that a special  technique  was  used  to 
simulate  the  Kautz  fixed-component  filters  digitally. A method  attributed  to 
Tustin  was  employed,  which  allows  the  accurate  simulation of a continuous 
filter  by a digital  difference  equation. + With this  technique,  it  was  only 
necessary  to  use a rate  of 10 samples  per  second  for  the  human  operator's 
input  and  output  waveforms.  It wil l  be  recalled  that  the  highest  frequency 
among  the  poles of the  Kautz  filters is 20 .01  radians  per  second  or 3 . 2  
cycles  per  second.  The  sampling  theorem  therefore  requires  that a 
minimum  sampling  rate of 6 . 4  samples  per  second  be  used.  It w i l l  be  seen 
that  the  Tustin  method  is  indeed  efficient,  since  it  does  yield good resul ts  
even when  the  theoretical  minimum  sampling  rate is approached. 

Results of Experiment 1 

In  this  experiment,  the  objective w a s  to  determine  the  accuracy  with 
which  the  non-real-time  and  the  real-time  characterization  techniques  could 
characterize a known,  time-varying  linear  network  which is  somewhat similar 

::A discussion of  the  problem of digital  simulation of continuous  filtering 
operations is given  in  Reference 17. 
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to  the  transfer  function of the  human  operator.  (See  Fig. 4. ) In order   to  
avoid  the  problem of energy  decay  within  the  network to be  characterized 
when a time  change in that  network is made,  the  signal s/(t) was  obtained 
by  switching  among  the  outputs of three  f i l ters.   In  this way  definite,  abrupt 
step  changes  along  the  time axis of the  network  to  be  characterized  could  be 
realized.  Fig. 9 is an isometric  plot  of the  theoretical  special  step  response 
of the  network  to  be  characterized.  The  three-  constant  networks  are  con- 
secutively  switched  into  the  output, Y(t j  , for 20 seconds  during  the  data 
run. 

The  non-real-time  characterization  was  computed  with  the  constant, L, 
set  equal  to  12.  Thus,  the  interval  between  the  peaks of the  triangular  fixed- 
time  function,  called  the  data  interval, w a s  5 seconds  per  interval.  It  was 
found that  the  percent  normalized  integral  squared  error  (100  times  the  ratio 
of the  integral of the  squared  error  signal  to  the  integral  of the  squared  value 
of the  desired  signal, y(,$) when  the  optimal  characterization  network w a s  
used  was  1.7970,  with  the  great  majority of the error   occurr ing  a t   the  two 
abrupt  step  changes.   The  iso.netric  plot   of  the  special   step  response  for  the 
optimal  non-real-time  characterization is  shown  in  Fig.  10.  This  plot 
clearly  demonstrates the ability of the  non-real-time  technique to accurately 
characterize the  known time-varying  network.  It is seen  that  the  greatest 
par t  of the  inaccuracy  occurs  at  the  abrupt  change  in  the  network  being  char- 
acterized.  However,  it  is  unlikely  that  the  human  operator would undergo 
time  changes as severe  as  those  shown  in  Fig. 9. Consequently,  this  char- 
acterization is an  extreme  test  of the  non-real-time  technique. 

The  real-time  characterization  was  also  successful.  The  percent 
normalized  integral   squared  error  for  the  optimal  characterization  f i l ter  
was 7. 53%. This  larger  error  value  can  be  attr ibuted  to  the  fact   that   in  the 
real-time  characterization  future  information  cannot  be  used.  Fig.  11 is an 
isometric  plot of the  special  step  response  for  the  optimal  real-time  char- 
acterization  filter.  This  plot is somewhat  deceiving,  because  it  does  not 
exhibit  the  special  step  response  within  the  intervals  along  the t axis.   There 
a r e   e r r o r s  which  do  not  appear  on  the  plot  in  the  fifth  interval(ZO<tC25) 
and in  the  ninth  interval(+O(t-C95);  that  is,  those  intervals  immediately 
following  the  abrupt  changes  in  the  known  filter.  Nevertheless,  there  is  very 
l i t t le   error   e lsewhere.   Fig.  11 demonstrates  the  ability of the  real-time 
technique to accurately  characterize  the known time  -varying  network. 

Results of Experiment 2 

This  experiment w a s  designed s o  as to  allow  characterization of the 
human  pilot  in  one  axis of a two-axis  task  and  to  allow  study of the  compromise 
or  uncertainty  between  error  in  characterization and rapidity of time 
variation of the  characterization  model.  The  data  were  obtained  at NASA, 
Langley  Research  Center,  for a well-practiced  pilot,  by  Mr.  James J. Adams 
and  his  associates. 

In  the  non-real-time  case,  the  integer, L , w a s  varied  over a wide 
range of values.  In  order  to  avoid  excessively  high  processing  costs  for 
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large  values of t! (rapid  time  variation, small error) ,   the   data   interval   was 
shortened.  In all cases,  the  beginning of the  data  interval  was  the same 
point.  Table I summarizes  the  pertinent  information  and  results of the 
various  characterizations.   The  uncertainty  or  compromise  between  error 
in characterization  and  time-variability is clearly  demonstrated.   The 
fourth  column  represents  the  error  in  characterization, and  the first column 
represents  the  degree of variability. As the  number of intervals  per 
minute  increases  (indicating  greater  allowed  variability),  the  characterization 
e r ror   decreases .   F ig .  12 is a plot of this  uncertainty as represented  by 
error  versus  data  interval.   The  case  in  which  the  data  interval is 60 seconds 
per   interval  is very  nearly  the  same as that  which  assumes  the  transfer 
characterist ic is constant.  The  error  for  constant  coefficients would be 
approximately 3 7.0%. 

Figs.  13 through 17 are   isometr ic   plots  of the  characterized  special 
step  response  for  the  pilot  under  various  settings of the  data  interval. All 
of the  plots  start at the  same  point  in  the  data  run,  but  several  are  not  pre- 
sented  for  the  entire 60 seconds  for  reasons of economy, as stated  earlier.  
It is evident,  from  the  plots,  that  greater  variability is obtained as the  data 
interval  decreases.  

An  interesting  incidental  discovery  was  made  while  working  with  this 
experiment  and  Experiment  3.  It  appears  that  the  human  operator  often 
exhibits a nonminimum  phase  transfer  characteristic.  This  characteristic, 
which is sometimes  assumed  to  be a pure  delay,  causes  the  step  response 
of the  characterization  model  to  begin  with a negative-going  transient.  In 
order  to  be  sure  that  the  human  operator's  response is indeed  more  like a 
nonminimum  phase  network  than  like a network  with  pure  delay, a computer 
optimal  characterization  run  was  made  with a 0.1-second  delay  incorporated 
in  the  characterization  filter. ::: It  was found that a 20% i nc rease   i n   e r ro r  
occurred,  thus  indicating a poorer  approximation  for  the  pure  delay  case. ::::: 

While  the  experimental  verification  was  in  progress, a new  analog 
output  facility  was  connected  to  the  digital  computer.  This  equipment is 
capable of plotting  the  special  step  responses  for  the  optimal  characterization 
networks.  Consequently,  the  remaining  portion of the  experimental  verifi- 
cation  was  performed  using  this  plotting  equipment.  It  was  necessary, 
however,  to  discontinue  the  isometric  presentation  and  to  have  the  special 
step  responses  plotted  serially.  In  all  of  the  remaining  special  step  response 

:: The  characterization  filter w a s  optimized  with  the  pure  delay  incorporated. 
Thus,  the  best  filter  for  use  with a 0. 1-second  delay  was  obtained. 

::::After all  the  experiments  had  been  completed, a known nonminimum  phase 
network  was  characterized  by  the  non-real-time  method.  The  resulting 
e r ro r   was   ve ry   sma l l  and  the  response of the  model  was  almost  identical 
to  that of the  known  network.  This  experiment  served  as  another  check 
upon  the  above  stated  results. 
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TABLE I 

Summary of Information and Results 

Fo r  the  Non-Real-Time  Case of Experiment 2 

Data  Run 70 Norm.  Spec.  Step 
Effective Value Actual  Value  Length, T Int. Sq. Data  Interval  Response 

(Intervals  /Min. ) 
of  L  of L (Sec. ) E r r o r  (Secs.  /Interval)  Plotted  in 

1 

6 

12 

24 

60 

1 

6 

12 

12 

14 

60 36.470 60.0 Fig. 13 

60 34.0 10.0 Fig.  14 

60 21.5 5.0 Fig.  15 

3 0  9.4 2.5 Fig. 16 

14 2. 99 1.0 Fig. 17 



records,  the  running  time is upward  from  the  lower  left  corner. When the 
top of a column is reached,  the  continuation is at the  bottom of the  next 
column  to  the  right. 

The  real-time  portion of Experiment 2 shows a similar type of special  
step  response  to  that  obtained  for  the  non-real-time  case.  (See  Fig. 18. ) 
A considerable  degree of time  variability is  present,  and there  are  approxi- 
mately  three  different  characteristic  responses  which  appear  repetitively. 
The  percent  normalized  integral   squared  error is 42.077'0. 

Results of Experiment 3 

The  objective of Experiment 3 w a s  to  determine  the  ability of the 
characterization  methods  to  accurately  characterize a forced  change  in  the 
human  operator 's   mode of tracking.  This  change  was  initiated  by  making a 
significant  change  in  the  follow-up  dynamics  at  the  exact  midpoint  in  time 
of the  data  interval.  (See  Fig. 6 . )  Data  were  taken  for  four  subjects,  each 
of whom  had practiced  for a short   t ime with each of the two se ts  of dynamics. 
The  first  subject was  a test  pilot,  experienced  in  variable-stability  aircraft. 
The  second  was  an  engineering  student.  The  third  and  fourth  were  research 
engineers.  The  numerical  results of the  characterization  experiment  are 
given  in  Table 11. 

In  the  non-real-time  case,  the  integer L was  set  equal  to 12  for  all 
runs,  thus  producing a data  interval of 5 seconds  per  interval. 

Both  the  non-real-time and  the real-t ime  special   step  responses  for 
the  optimal  characterizations  exhibit  marked  changes  as  functions of time. 
(See  Figs. 19 through 2 6 . )  In  all  cases,  the  special  step  response is re la-  
tively  constant  in  running  time  up  to  the  time, .C = 3 0  seconds.  The 
significant  change  occurs  in  the  neighborhood of t = 30 seconds,  and  then 
the  special  step  responses  settle  to new characterist ic  responses.   I t   is  
quite  clear  that  the  chan e in  trackin  mode of each  humanLoperator  resulting 
l e  ninminimum 
phase  character of the  human  operator  over  parts of each  record  is   evident.  

It  was found that  the  subjects  tracked  the  error  signal  in  significantly 
different  ways.  Subject 2 used  rather  violent  corrective  stick  motions,  sub- 
jects 1 and 3 used  more  or  less  average  corrective  motions,  and subject 4 
used  very  mild  corrective  measures.   The  special   step  response  plots  for 
the  various  subjects  show  the  manifestations of these  various  modes. 
Subject 2 possesses  a special  step  response  which  has a high  gain  and very 
l i t t le  lag,   whereas the  response of subject 4 has low gain and significant  lag. 
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TABLE I1 

Characterization  Results  for  Experiment 3 

* Non-Real-Time  Real-Time 

Subject No. Occupation  Non-Real-Time  Real-Time  Plotted  in  Plotted  in 
70 N.I.S.E.,  70 N.I.S.E.,  Step  Response  Step  Response 

1 Pilot 4. 9470 18.6370 Fig. 19 Fig. 23 

2 Student 13. 2070 39.  19% Fig. 20 Fig. 24 

3 Engine e r 6.6 1% 28.3 270 Fig. 2 1  Fig. 25 

4 Engine e r 3. 9070 9.1070 Fig. 22 Fig. 26 

* 
Normalized  integral  squared  error. 



C ONC  LUSIONS 

The  optimal  deterministic  characterization  theory  presented  in  this 
report   has  been  experimentally  verified.   I t   has  been  shown  that it is 
possible  to  obtain  time-varying  transfer  characteristics  in a practical  
manner  by  using  an  exact  theory of constrained  fixed-form  optimization. 
When a special  iteration  technique is used  in  combination  with  the  fixed- 
form  theory,  stability  within  the  solution  for  the  characterization  filter 
yielding  minimum e r r o r  is always  assured.  In  every  practical  case,  there 
is a unique  value of minimum  e r ror ,  and it must  be  given  when  the  optimal 
characterization  f i l ter  is used. 

An uncertainty  in  characterization is demonstrated  which  requires 
that a compromise  be  reached  between  the  error  in  characterization  and  the 
time-variability of the  optimal  time-varying  transfer  characteristic.  It  has 
also  been  shown  that  both  the  non-real-time  and  the  real-time  characterization 
techniques  are  capable of detecting  changes  in  the  time-varying  transfer 
characterist ic of the  human  operator. 

Cornel1  Aeronautical  Laboratory,  Inc. 
Of Cornel1  University 

Buffalo, New York,  November  16,  1964. 
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APPENDIX A 

MATHEMATICAL SYMBOLS 

J 

K 

L 

t 

e 

X(ju .  j d )  

4 

a kernel  function of a nonlinear  network 

an  integer  equal  to  the  number of component  filters  in  the 
characterization  model 

an  integer  which is one less  than  the  number of fixed-time 
functions  used. 

the  length of time  in  seconds of the  characterization  interval 

a function  representing a general  integrand 

general   integers 

an  integer  representing  the  number of an  iteration  cycle  in 
the  minimization  process. 

independent  variable,  time,  in  seconds 

performance  measure  representing  the  amount of e r ro r   i n  
characterizing  the  human  operator 

variable of integration;  "data"  axis  time  variable  (seconds) 

independent  variables  representing  lags  in  time  (seconds) 

transfer  function of a network  whose  impulse  response 
is  x i  (29 
time-varying  transfer  function of a network  whose  time- 
varying  impulse  response is h(tJ 2-.) 

bifrequency  transfer  function of a time-varying  linear 
network  whose  time-varying  impulse  response is h(t,2-) 

kernel  function of a nonlinear  component  filter of a model 
fi l ter  

pole or   zero  of a fixed  linear  component  filter  in a model 
f i l ter  

special  step  response of a linear  time-varying  network 
whose  impulse  response is d ( t , P )  

Fourier   t ransform of ,tr/t) 

3 3  



... , . . . . . " . . . "_ 

Four ie r   t ransform of p(t) 

a class of nonlinear  networks,  the  class  becoming  more 
inclusive as n increases  

time-varying  gain  weighting  the  signal ,Xi(t) 

general  time  -varying  gain 

error  in  characterizing  the  human  operator 

general  impulse  response of a fixed  linear  network 

linear  weighting  function  used  in  computing c(d) 
and qj (t) 
impulse  response of a component  filter of a model  f i l ter  

impulse  response of a time-varying  linear  network 

input  signal;  signal  considered  as  the  input  to a display 
which a human  operator is tracking 

output of a component  filter of a model  f i l ter  

output of the  human  operator;  desired  output of the 
characterization  model  filter 

output of a linear  or  nonlinear  network 

non-real-time  integral of the  product of y(t) and %~(t) 

non-real-time  integral of the  product of Xi(?) and ,Zl(t) 

instantaneous  performance  measure  representing  the 
amount of error  in  characterizing  the  human  operator  in 
the  real-time  case 

constrained  time-varying  gain  in  the  real-time  solution 

a constant  which is used  to  weight  the  fixed-time  function, 

one of a group of fixed-time  functions  which  are  weighted 
so as  to  make up the  time-varying  gains, 

short-time  weighted  average of the  product of y ( )  
and Z i H  

and x p )  
short-time  weighted  average of the  product of X i ( t )  
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A' arbitrary  posit ive  constant  representing  relative 
weighting  in a calculus-of-variations  problem 

j ,  a second  Fourier  frequency  variable 

9 non-real-t ime  averages of data required  for  minimization 
'mi ' minJ' of the  performance  measure,  8 

ro time-constant of an  exponential  weighting  function 

J-d a first Fourier  frequency  variable 

A dot  over a symbol  indicates a derivative  with  respect 
to the  corresponding  independent  variable. 

3 5  



I 

APPENDIX B 

PROOF THAT A SOLUTION O F  THE ALGEBRAIC EQUATIONS (43) 

YIELDS A SET  OF  COEFFICIENTS  FOR  THE  CHARACTERIZATION 

MODEL WHICH PRODUCES MINIMUM- ERROR 

Substitution of equations  (43)  into  equation  (38)  yields  the  optimal 
value of the  performance  measure 

where  the cUmi0'S are  the  solutions  obtained  from  equations  (43).  Suppose 
that a different  set of constants  are  used  instead of those  obtained  from 
equations  (43).  These  non-optimal  constants, , could  be  written 
as 

where  each dm; is an  arbitrary  real   constant.  The  value of the  performance 
measure  for  the  non-optimal  coefficients, ami , can  be  written as 

In  order  to  show  that  the  equations  (43)  will  produce  the  minimum  value 
of e r r o r ,  it must  be  shown  that 

e,,,, 2 e,,, for  any  arbitrary  sequence of numbers,  dm; I 

(4b 1 
i = t , z , . * ; K ;  m = O , I , 2 , * a * , i .  

The  following is a proof  of  inequality  4b. 

Consider  that 
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since  the  integrand is +ways greater  than  or  equal  to  zero.   The 
can  be  expanded  such  that  the  following  condition is obtained: 

which,  from  equation (37), is  seen  to  be  equivalent  to 

H L K L  

2 2 ZL Ami Anj 2 0  
i-I m=o j = r  n e  

Consider  also  that,  from  the  optimal  values of the  coefficients  gi 
equations (43), it  follows  that 

and therefore 

Similarly,  it  can  be  shown  that 

integrand 

,ven b 'Y 
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If BQoT i s  added  to  each  side of inequality  (lzb),  the  left-hand  side 
becomes  equal  to 6N.opz . Therefore,  inequality (4b)  is true,  and  the 
desired proof  has  been  obtained. 
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Figure 1 A network  whose  time-varying  transfer  function  can be written  in 
the  form of  equation (15). 
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A T Y P I C A L  a i ( t )  F U N C T I O N  

TRIANGULAR  FUNCTION  AMPLl  TUDES  CAPABLE  OF  REPRESENTING ap( t )  

Figure 2 Graph of a typical  time-varying  gain  using  the  staggered 
triangular  functions as fixed  time  functions. 

42 



F I LTER WHOSE 
MULTl   PL I  ER t t Ti ( t )  IMPULSE RESPONSE 

IS h ( T )  

I 
+ F I LTER WHOSE 

* IMPULSE  RESPONSE - w J i j ( t )  
IS h(  T )  

Figure  3 Diagram of equipment  required for computing a) &(t) and b) G j ( t )  
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RANDOM NO I S E  GENERATOR 

Figure 4 

G 2   ( j w )  0 
1 I 

T I M E   V A R Y I N G  NETWORK 
RANDOM NO I S E  GENERATOR 

""""- 
SPECTRUM: ' FOLLOW-UP 

K2 A  DYNAM I CS 

GD (j.1 = - 2  I 
9 . 5  (JW)  

1 -  

L """ 
* SWITCH  POSIT ION 

A: t <  20 SEC 

6: 20< t < 40 SEC 

C: t>  40 SEC 

System  block  diagram  used for characterization of known time- 
varying  network,  (Experiment 1).  



FOLLOW-UP DYNAM I CS 

Figure 5 System  block  diagram  used  for  characterization of human  pilot 
in  one  axis of a two-axis  task,  (Experiment 2). 



x( t) 
RANDOM N O I S E  GENERATOR T 

FOLLOW-UP  DYNAMICS 

I I I I 

* S W I T C H   P O S I T I O N  

A: t 30 SEC 
B: t > 30 SEC 

Figure 6 System  block  diagram  for  characterization of human  operator 
during  change of dynamics,  (Experiment 3). 



NUMBER OF ITERATIONS 

Figure 7 Typical  plot of percent  error  in  characterization  versus  number 
of iteration  cycles  for  the  real-time  case (7 unknowns). 



NUMBER OF ITERATIONS 

Figure 8 Typical  plot of percent  error  in  characterization  versus  number 
of iteration  cycles  for  the  non-real-time  case  (91  unknowns). 



Figure 9 Isometric  plot of the  special  step  response of the known time- 
varying  network to be  characterized. 



Figure 10 Isometric  plot of the  special  step  response  for  the  optimal  non- 
real-time  characterization of the  known,  time-varying  network. 



Figure 11 Isometric  plot of the  special  step  response  for  the  optimal  real- 
time  characterization of the known, time-varying  network. 



Figure 12 Graph of experimental  data showing  the  compromise  between 
e r r o r  and variability of the transfer  characteristic. 



Figure 13 Isometric  plot of non-real-time  special  step  response of pilot 
characterization  model (NASA data) for data  interval = 60 sec/int. 





Figure 15 Isometric  plot of non-real-time  special  step  response of pilot 
characterization  model (NASA data)  for  data  interval = 5 sec/int. 



Figure 16 Isometric  plot of non-real-time  special  step  response of pilot 
characterization  model (NASA data)  for  data  interval = 2. 5 sec/int. 



Figure 17 Isometric  plot of non-real-time  special  step  response of pilot 
characterization  model (NASA data)  for  data  interval = 1.0  sec/int. 
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Figure 18 Plot of real-t ime  special   step  response of pilot  characterization 
model (NASA data). 
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Figure 19 Plot of non-real-time  special  step  response  for  Subject 1 
characterization  model  (Experiment 3 ) .  
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Figure 20 Plot of non-real-t ime  special   step  response for Subject 2 
characterization  model  (Experiment 3 ) .  
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Figure 21 Plot of non-real-time  special  step  response for Subject 3 
characterization  model  (Experiment 3 ) .  



1 1 

I I " 
1 1 

Figure 22  Plot of non-real-time  special  step  response  for  Subject 4 
characterization  model  (Experiment 3 ) .  



Figure 23 Plot of real-t ime  special   step  response for Subject 1 
characterization  model  (Experiment 3 ) .  
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Figure 24 Plot of real-time  special  step  response  for  Subject 2 
characterization  model  (Experiment 3 ) .  
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Figure 26 Plot of real-time  special  step  response  for  Subject 4 
characterization  model  (Experiment 3 ) .  


